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Supplementary Figures 

 

 

Supplementary Figure 1: Simulation of equilibrium population densities as a function of 

Dilution Factor has qualitative similarities to experimental results. A noisy, simulated model 

of our experimental procedure was run at different dilution factors with an array of starting 

points. The trajectories approached an equilibrium, which was found after letting the simulation 

run for a prolonged period of time. The ensuing plot shows the simulated equilibrium points for 

the Producer (green) and Freeloader (red) population densities (in cells/μL). By dilution factors 

above 1800, all populations go extinct, regardless of the location of the starting points. Due to 

the Allee effect, which is explicit in the model, the point (0,0) is always a fixed point. Details of 

the simulation can be found in Supplementary Note 6 and Supplementary Table 1. 
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Supplementary Figure 2: Early warning indicators of ecosystem collapse. A compilation of 

results from all of the three experiments for: (a) Mean Equilibrium Density for each population, 

(b) CV – Coefficient of Variation for each population, (c) AR(1) autocorrelation (see 

Supplementary Note 5) for each population, which was measured from Day 2 to the last day, (d) 

Return time (see  Supplementary Note 5), and (e)  |λ| and θ - magnitude and argument of the 

eigenvalues. Data was filtered (see  Supplementary Note 3) to exclude any obviously dying 

trajectories from the three experiments. Error bars represent standard errors. The Black data 

corresponds to experiment from Figs. 1 and 4, Violet to the one from Fig. 2, and Blue to the data 

from Fig. 3. Error bars represent standard errors and were attained through bootstrapping. 
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Supplementary Figure 3: Model suggests the systems undergoes a Hopf bifurcation at the 

critical threshold. A simulation of our model system at 3 DFs near our conjectured critical point 

(~2100) shows that the trajectories change from a converging spiral to a diverging spiral, 

indicative of a Hopf bifurcation. Eventually, at high enough Dilution Factors, spiraling behavior 

is overshadowed by a total population collapse. Fixed points are indicated by solid red dots 

(stable) or hollow red dots (unstable). The high-producer fixed point on a Dilution Factor of 

1800 has been shifted to the left in order to fit on the graph. Direction of motion is counter-

clockwise for all dilution factors. All ticks are spaced by an equal yet unnormalized quantity. 

Simulations were initialized with 100-200 starting points (arranged in a grid), and run for 20-30 

iterations. 
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Supplementary Figure 4: Spiraling trajectory graphs, filtering, and calculation of 

equilibrium points. (a) The spiraling trajectories of all dilution factors of the 7-day experiment 

represented in Fig. 3, plotted in gray on the same Producer – Freeloader plane. Population 

densities are all expressed in units of 10
6
 cells/mL. Black points denote the final state of those 

trajectories that survived the filtering algorithm described in  Supplementary Note 3, and which 

are thus considered to be in equilibrium. The red squares represent the mean of these filtered 

points with accompanying standard errors – which was further used as an estimate of the 

equilibrium point of the spirals. (b) These were plotted as a function of the dilution factor for 

both the Producers (green) and Freeloaders (red).  
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Supplementary Figure 5: Return to equilibrium after a perturbation as a function of the 

magnitude of the eigenvalue. (a) We show the dynamical response of a population whose 

dynamics are governed by equation (3) (only one of the populations, x, is plotted), with a 

Jacobian matrix with imaginary eigenvalues (see equation (21)). The dynamics are characterized 

by damped oscillatory behavior, and thus they are described by two timescales; (i) the timescale 

of oscillations and (ii) the decay of the envelope of the oscillations. For simplicity we just plot 

the deterministic dynamics (noise strength is assumed to be 0). The orange dots correspond to 

|λ|=0.99, blue dots correspond to |λ|=0.95, and purple correspond to |λ|=0.75. All other parameters 

(θ=15
o
,Q=45

o
, r=1) are kept constant. We find that while the envelope of the fluctuations 

(dashed lines) decays ever more slowly as |λ|→1, the short term decay is little sensitive to the 

value of |λ|. Both time and Return Time units are Days. (b) We repeated this simulation in the 

presence of noise ( 1  ). The return time was naively estimated by fitting the short-term decay 

(over the first eight days) to an exponential decay function (mimicking what an unsuspecting 

researcher might do with experimental data collected in the field). As expected, we found that 

this “naïve estimate” of the decay time scales only weakly with |λ|, since it is the envelope what 

should decay more and more slowly as |λ| increases, while the short term dynamics are mainly 

governed by the complex argument of the eigenvalue (θ). Error bars represent standard deviation 

of the list of return times obtained in 50 simulations. 
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Supplementary Figure 6: Comparison of eigenvalue magnitude results from two different 

analysis methods. The experiment described in Fig. 3 was analyzed in two different ways: a 

functional minimization of four parameters given a fixed point (Method 1, blue), and a 

parameter-fitting algorithm calculated over four parameters as well as the fixed point location 

(Method 2, black). The differences between these methods are described in Supplementary Note 

4. The eigenvalue magnitudes calculated using these methods were plotted against the dilution 

factor. Error bars represent standard error, and were obtained through bootstrapping the 

trajectories included in the analysis, as well as the location of the fixed point for Method 1. 
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Supplementary Tables 

Supplementary Table 1: The values used for the dynamical simulation of the producer-

freeloader system, as described in Supplementary Note 6.  

Parameter Value in simulation 

γl 0.31 hr
-1

 

γh 0.47 hr
-1

 

W 276 μL
-1

 

Tlag 3 hr 

b 0.06 

a 0.075 

K 83,341 μL
-1
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Supplementary Notes 

Supplementary Note 1: Analytical derivation of lag-1 autocorrelation (AR(1)) in species 

interactions 

In the framework of a first-order multivariate autoregressive model (MAR(1)) model 
30,46

, we 

derive the asymptotic behaviors of  lag-1autocorrelation and the variance for each population in a 

two-species ecosystem as the magnitude of the dominant eigenvalue of the interaction matrix 

approaches 1. We show that for an ecosystem with two interacting species, the AR(1) for each 

species is generally not expected to be a good indicator of critical slowing down. When the 

species interactions lead to oscillatory dynamics (i.e. when the Jacobian has imaginary 

eigenvalues λ1,2=|λ|e
±iθ

), the AR(1) does not approach ~1 as the magnitude of the eigenvalue (|λ|) 

approaches 1; instead AR(1) approaches the real part of the eigenvalue. Only when the 

trajectories do not have an oscillatory component (i.e. when the eigenvalues of the Jacobian, λdom 

and λ2, are real), the AR(1) approaches ~1 as the dominant eigenvalue λdom approaches 1. In 

contrast to the AR(1), we show that the variance for each population is expected to diverge as the 

dominant eigenvalue approaches 1, regardless of whether the eigenvalues are real or complex.  

We note that the results here are only meant to show the qualitative behaviors of these two 

commonly used statistical indicators based on time series of a single species (partial information) 

when a two-species ecosystem is very close to a bifurcation associated with critical slowing 

down. In general, the projection of each population on the dominant eigenvector will also vary in 

the approach of bifurcations; thus despite their asymptotic behaviors, the indicators based on a 

single population may not be monotonically increasing before population collapse and this will 

complicate their usefulness as warning signals. However, if we also have time series of the 

interacting species (complete information), then we should follow our analysis on the phase 

plane to fit the Jacobian) and transform the variables by projecting onto the eigenvectors, which 

gives a more complete measure of stability of the system
5
.   

MAR(1) model of a two-species ecosystem: Let us assume a two-species ecosystem undergoing 

discrete dynamics as in our experiments. Let Xt and Yt  represent the population size for both 

species at day t. Let’s also define the population size of both species at equilibrium as X* and Y*. 

The coupled population dynamics near equilibrium is given by the discrete equation: 

,1

,1

* *

* *

x tt t

y tt t

X X X X
J

Y Y Y Y








      
       

      
,    (3) 

where J represents the Jacobian matrix (also called “interaction matrix”). ξx,t and ξy,t are Gaussian 

while noise (we will drop the subscript t for convenience) and represent a random “extrinsic” 

noise term acting independently on each population. We assume that the extrinsic noise term for 

the two different populations is uncorrelated: 
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0x y   ,         (4) 

and also that it is not correlated with the population size: 

0x t x t y t y tX Y X Y       .     (5) 

Furthermore, to simplify our equations we introduce the following notation:  

 2 2

x  , *t tx X X  , *t ty Y Y  ,     (6) 

where
2 denotes the strength of the intrinsic noise term, and xt and yt represent the deviation 

from equilibrium for both species. 

Using this notation, equation (3) can be rewritten as: 

1

1

xt t

yt t

x x
J

y y








    
       

     
,      (7) 

or, in vector form:  

1x x ξt tJ    .       (8) 

In order to compute the covariance matrix, we first take the transpose of this equation: 

1

T T T T
x x ξt t J    .       (9) 

Then we calculate the dot product of Equations (8) and (9). 

  1 1

T T T T T T T T T T
x x x ξ x ξ x x x ξ ξ x ξ ξt t t t t t t tJ J J J J J                   .     (10) 

In order to compute the covariance matrix, we take the time average (or, if the system is ergodic, 

the average over an ensemble of replicate populations at a given time) at both sides of this 

equation: 

1 1

T T T T T T T
x x x x x ξ ξ x ξ ξt t t t t tJ J J J              . (11) 

Since the system is in equilibrium, we find that: 

2

1 1
2

t t t

t t t t

t t t

x x y
C

x y y
 

 
     
 
 

T T
x x x x ,   (12) 
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where C stands for the covariance matrix. In addition, since the noise term ξ is assumed to be 

uncorrelated with the population size deviation xt we also find that: 

0.T T T
x ξ ξ xt tJ J           (13) 

and by assumption 0x y    and: 

2 2 2

x y    .        (14) 

For simplicity we assumed that 2 2 2

x y    . In general the magnitude of extrinsic noise is 

different for two species, but this does not change the results on asymptotic behaviors. We find: 

2 2
1 0

0 1

T
ξ ξ I 

 
   

 
.      (15) 

where I stands for the identity matrix. Therefore, Equation (11) takes the form: 

T T T T
x x x x ξ ξt t t tJ J            (16) 

or: 

2C J C J I   T
.       (17) 

In order to compute the AR(1), we follow essentially the same approach: We multiply both sides 

of equation (7) by the transpose vector 
T

xt . Then, just as we did above, we take time averages at 

both sides of the equation. By doing this we find the following relationship between the lag-1 

correlation matrix and the covariance matrix and the Jacobian: 

1 1

1 1

t t t t

t t t t

x x x y
B J C

y x y y

 

 

 
   
 

.      (18) 

The AR(1) for the two populations can be calculated from this matrix, since they are defined as: 

1

2
(1)

t t

x

t

x x
AR

x


 ,       (19) 

1

2
(1)

t t

y

t

y y
AR

y


 .       (20) 
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The variances of both populations for Jacobians with complex eigenvalues: We have 

reached an equation that describes the covariance matrix as a function of the Jacobian and the 

extrinsic noise strength 
2 . In order to find the final closed form analytical equation for the 

covariances and variances from each species, as well as the AR(1), we need to know the Jacobian 

matrix. We first study the case where both eigenvalues are complex conjugate of each other. The 

Jacobian can be decomposed in its eigenvectors (assuming that the matrix is not defective): 

1
0

0

i

i

e
J P P

e













 
   

 
,      (21) 

where P is the matrix whose columns are the eigenvectors of J. Since by assumption the 

Jacobian has complex eigenvalues, its two eigenvectors are complex conjugate of each other: 

1 1

2 2

1 1

2 2

i i

i i

u e u e
P

u e u e

 

 





 
   
 

.      (22) 

Therefore, the Jacobian can be written in terms of the magnitude and complex argument of its 

eigenvalues (|λ| and θ), as well as the two parameters that characterize its eigenvectors, (r and Q, 

where Q = φ2-φ1, and r = |u2|/|u1|.). By inserting equation (22) into equation (21), we get: 

1
11 12

21 22

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] 

J J Cos Cot Q Sin r Csc Q Sin
J

J J r Csc Q Sin Cos Cot Q Sin

  


  

    
    

   

. (23) 

Finally, we can insert equation (23) into equation (17), and solve to obtain analytical expressions 

for the variances of both populations as well as their covariance. The expressions are lengthy and 

not particularly informative. However, we are only interested in their behavior as the absolute 

magnitude of the eigenvalue approaches 1, a situation corresponding to critical slowing down. 

We find that in the limit when |λ|→1: 

22 2
2

2

[ ] 1
~

1 2
t

Csc Q r
x

r





  
  

    
,     (24) 

22 2
2

2

[ ] 1
~

1 2
t

Csc Q r
y

r





  
  

    
,     (25) 

2 2[ ] [ ] 1
~

1 2 2
t t

Csc Q Cot Q r
x y

r





  
  

   
.    (26) 

Therefore, the variance for both populations diverges as |λ|→1. 
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AR(1) for Jacobian matrices with complex eigenvalues: We can compute the AR(1) by 

inserting equation (23) into equation (18). We find: 

2

11 121

11 122 2 2
(1)

t t tt t t t

x

t t t

J x J x yx x x y
AR J J

x x x




    .  (27) 

2

21 221

21 222 2 2
(1)

t t tt t t t

y

t t t

J y J x yy y x y
AR J J

y y y




    .  (28) 

Now we can insert equations (23-26) into equations (27-28), and express the AR(1) as a function 

of the eigenvalues and the parameters characterizing the eigenvectors (|λ|, θ, r, Q). As it was the 

case for the variances, the analytical equations calculated this way are long and not particularly 

informative. However, we can take the limit where |λ|→1 and find out what the behavior of the 

AR(1) in the vicinity of the critical transition should be. What we find is that the AR(1) does not 

approach 1, as it does for single-species ecosystems. Instead, the AR(1) behaves as: 

(1) (1) ~ [ ]x yAR AR Cos  .      (29) 

Therefore, for two-species ecosystem with strong interactions that lead to oscillatory behavior 

(typical of many consumer-resource ecosystems, such as predator-prey, host-parasitoid, or host-

parasite) and characterized by complex eigenvalues, we conclude that the AR(1) for each 

population is not generally expected to approach 1 as the ecosystem approaches a critical 

transition characterized by |λ|→1 (i.e. critical slowing down). Thus, the failure of AR(1) in our 

experimental observation may be due to the fact that: 1) while the magnitude of the eigenvalue 

increases, the real part of the eigenvalue does not necessarily increase monotonically; 2) the 

relatively small sample size of our experiment tends to underestimate AR(1), based on 

simulations results in MAR(1) model. Meanwhile, the variance of each population is still 

expected to diverge as shown in equations (24-25). Together with the experimental observations 

(Fig. 4 and Supplementary Fig. 2b), our results suggest that variation of a single population may 

be a more reliable indicator than lag-1 autocorrelation.    

Variance and AR(1) for Jacobian matrices with real eigenvalues: We can use the same 

procedure to show that, for Jacobian matrices with real eigenvalues, the AR(1) does indeed 

approach 1 as the dominant eigenvalue approaches 1. In addition, the variance also diverges, as it 

did for the case of complex eigenvalues. In order to do this, we first write down a general 

Jacobian matrix with real eigenvalues (we will denote the dominant eigenvalue as λdom, and the 

other one as λ2). The eigendecomposition of the Jacobian on the basis of its eigenvectors is: 

1

2

0

0

dom
J P P





 
  

 
.       (30) 
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For convenience, we use eigenvectors of length 1. This allows us to write down the matrix P as: 

[ ] [ ]

[ ] [ ]

Cos Cos
P

Sin Sin

 

 

 
  
 

,      (31) 

where α and β and are the angles formed by each eigenvector with the x axis in the phase space 

formed by the two populations. Combining equations (30) and (31), we find the following 

parameterization of J as a function of its two eigenvalues (λdom and λ2), and the two angles that 

characterize its eigenvectors (α and β): 

 
 

2 2

2 2

[ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ]

dom dom

dom dom

Cos Sin Cos Sin Cos Cos
J Csc

Sin Sin Cos Sin Cos Sin

         
 

         

  
   

   

. (32) 

In order to compute the AR(1), all we have to do is to insert equation (32) into equation (17) and 

find all the elements in the covariance matrix. As before, we are only interested in the behavior 

of these equations as λdom approaches 1. In this limit, we find: 

22
2 2[ ]

~ [ ]
1 2

t

dom

Csc
x Cos

  




 
 

  
,    (33) 

22
2 2[ ]

~ [ ]
1 2

t

dom

Csc
y Sin

  




 
 

  
,    (34)  

22 [ ]
~ [2 ]

1 2
t t

dom

Csc
x y Sin

  




 
 

  
.    (35) 

Equations (33) and (34) show that the variances of both populations diverge as λdom→1. We can 

use these equations, together with equations (27-28) to find the AR(1). In the same limit, when 

λdom→1, the AR(1) for both individual populations approaches 1. One situation that arises when 

dealing with real eigenvalues is that if the projection of a species on the dominant eigenvector is 

very small (i.e., if Cos[α]<<1), the variance may not diverge noticeably until the dominant 

eigenvalue is extremely close to 1. In conclusion, we have shown that when the eigenvalues are 

both real both the variance and the AR(1) are expected to be good indirect indicators of critical 

slowing down.  
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Supplementary Note 2: Discussion of the Return Time 

In the presence of strong inter-species interactions that lead to an oscillatory component, the 

dynamics of both involved species will be affected by those oscillations. In the main text we 

argue that the return time may be hard to estimate in these situations. Indeed, in Supplementary 

Fig. 5 we followed what we believe would be the zero-order approach for an experimentalist 

trying to estimate the return time of a single species; this is, recording population size as a 

function of time following a perturbation or disturbance, and then fitting the observed relaxation 

to equilibrium to a decaying exponential to find the characteristic time of recovery. This 

approach has been successfully employed in previous laboratory experiments with a single 

species 
26,27

. Furthermore, one of those experiments 
26

, was performed on a single-species 

population consisting of the same producer yeast strain we use here. Therefore, it is natural to 

replicate the experimental procedures that we have already established successfully for the pure 

freeloader population, to estimate the return time in the presence of the freeloader strain. As 

shown in Supplementary Fig. 2d, we did not observe a strong increase in the return time as a 

function of the dilution factor. Only for the producer population we did find an increase in the 

return time at DF=2000, although the data is very noisy at that high DF, and we also observe a 

decline in the return time for the freeloader population. Therefore, it appears as if the return time 

is not a reliable indicator of critical slowing down in our population. 

In order to explain this, we resort to theory and simulations. We use a generic Jacobian matrix 

with complex eigenvalues to determine the population dynamics of a two-species ecosystem in 

following a perturbation (which we apply to a population that was previously on equilibrium by 

artificially increasing the size of one of the populations). In Supplementary Fig. 5a we plot the 

response of a population to a perturbation for three different values of |λ| (0.75, 0.95 and 0.99). 

We find that the dynamics of both populations are characterized by damped oscillations, as 

expected. As |λ| increases, we notice that the envelope of the oscillations does indeed decay more 

slowly. However, the short-term dynamics (which would correspond to the naïve estimate of the 

return time that we applied to our experiments) is little affected by |λ|. We confirmed that this is 

still the case in the presence of noise (Supplementary Fig. 5b), where we estimated the return 

time for a set of different values of |λ| using the naïve approach. 

This analysis indicates that in order to estimate the component of the return time that does 

increase as |λ|→1, we would need to observe several cycles in order to be able to estimate the 

decay of the envelope of the oscillations. The total number of cycles that need to be observed 

depend only on the argument of the complex eigenvalues θ. This might lead to the requirement 

of very long time traces, a hurdle that cannot be overcome by increasing the sample size and 

observing for a shorter time. In our experiments, the envelope decay could not be seen with 

enough resolution for us to be able to estimate the return time.  
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Supplementary Note 3: Filtering of Raw Data 

At higher dilution factors, some trajectories become unstable and tend towards extinction. 

Trajectories whose final-day population was less than 5×10
5
 producers per mL were excluded 

from our analysis of fixed points and statistical indicators, as only populations that survived were 

relevant. For the data from the 9-day experiment (shown in Figs. 1, 4), two trajectories at a 

dilution factor (DF) of 2000 were also excluded because they were clearly heading towards 

extinction (even though the producers had not explicitly dropped below 5×10
5
cells/mL).  

For the experiments represented in Figs. 2 and 3, populations started at different initial 

conditions; an additional filtering algorithm was utilized to select populations that had 

approached equilibrium. Trajectories whose logarithmic population densities changed less than 

10% (for the experiment from Fig. 2) or 25% a day (for the experiment from Fig. 3) were defined 

to be in equilibrium. The mean of these populations around equilibrium on the final 3 days of the 

14-day experiment or the last day of the 7-day experiment was used as an estimate of the fixed 

point (see Supplementary Fig. 4). Due to the filter, this amounted to typically n=20 points being 

averaged. These estimates of the fixed points were later used to fit the Jacobian matrix (Method 

1) as explained in Note S4. However, the actual trajectories analyzed for the eigenvalues were 

filtered by the 5×10
5
 producers/mL criterion for survival, and the first day was dropped due to 

the apparent non-linear behavior far from the fixed point. Furthermore, for the calculation of lag-

1 autocorrelation, only data points that had logarithmic producer and freeloader densities within 

25% of the estimated fixed point were used. The specific data used in each main-text figure is 

described in Supplementary Note 7.  

 

 

Supplementary Note 4: Eigenvalue Computational Methods 

Method 1: The first method, is a least-squares functional minimization across the 4 parameters 

of J, given a known equilibrium point (X*, Y*). This point is estimated for each dilution factor by 

the mean of the filtered data of the trajectories as shown in Supplementary Fig. 4. The filter 

algorithm (described above) selects for data points from the last two days whose logarithmic 

population densities both changed by less than 25% a day.  

Next, an error function ε is built based on the squared difference between the true value of a 

trajectory’s motion and its estimation given an arbitrary Jacobian matrix J: 

2

1

1

* *

* *

t t

t t t

X X X X
J

Y Y Y Y






     
      

     
    (36) 
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This sum is expanded by inputting the trajectory data (Xt, Yt) from each day and each replicate, as 

well as substituting in the equilibrium point (X*, Y*) found previously. Then, this error function 

of four variables is numerically minimized to locate the best estimate for J. This method is 

essentially the least-squares estimation in linear regression.  

Method 2: A second method was also used. First, a set of possible J matrices was constructed 

from varying ranges of six parameters: the real and imaginary parts of the eigenvalues and the 

eigenvectors, as well as the location of the fixed point (X*, Y*). The matrix eigendecomposition J 

of a given set of parameters is then used to find an error value for that set of parameters. By 

summing the individual errors from within each replicate and day, the total error ε is calculated 

from equation (36). The set of parameters that has the smallest total error value is deemed the 

best fit. Typically, around 10 values are tried for each parameter – so there are a total of a million 

combinations of six parameters – and this can be iterated for increased precision.  

In Fig. 3, the results displayed come from Method 1 analysis. Both analysis methods yielded 

very similar results (Fig. S6). There are tradeoffs in using each analysis: Method 2 does not 

require knowledge of the equilibrium point, but it is much more computationally intensive. Note 

that in Method 2, it is assumed mathematically that the eigenvalues and eigenvectors are 

complex, whereas Method 1 leaves open the possibility of purely real results. The fixed point 

(X*, Y*) is assumed to be real and non-negative. To attain error estimates of these parameters, the 

analysis was bootstrapped through a random selection of the trajectory data points and fixed 

point. This fixed point is randomized via a bivariate normal distribution around the estimated 

fixed point (see Supplementary Note 3), with a standard deviation equal to the estimation’s 

standard error (Supplementary Fig. 4). 

While utilizing Method 1, we sometimes come across trajectories that give real pairs of 

eigenvalues, instead of complex conjugates. This generally either occurs at the lowest dilution 

factors (where the dynamics are too quick to be able to differentiate between real and complex 

eigenvalues) or at the highest dilution factors (where noise may drown out some properties of the 

signal). This also may be a consequence of our linearizing the dynamics of the trajectories. For 

the data shown in Fig. 3, only the largest dilution factor (DF 1600) had a significant number of 

real-eigenvalue trajectories. Thus, the mean eigenvalue magnitude was calculated by averaging 

the complex magnitude (in the cases of complex eigenvalues) or the dominant eigenvalue (in the 

cases of real eigenvalues), giving |λ| = 0.88±0.04. For comparison, when we constrained the 

analysis to force the eigenvalues into being complex, we found that |λ| = 0.80±0.03. In general, 

the difference between the dominant real eigenvalue and the complex magnitude is small when 

analyzed for the same trajectories. Furthermore, because constraining the eigenvalues to be 

complex can lead to a quantitatively worse fit, we think it is justified to analyze the eigenvalues 

in this mixed fashion. 
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Supplementary Note 5: Calculation of lag-1 Autocorrelation and Return Time 

For each population, lag-1autocorrelation (also referred to as AR(1)) is defined as:  
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where s

tx  is the population density of replicate trajectory s on day t, tx is the mean density of all 

replicates on day t, and T is the total number of days in the experiment. To estimate this from our 

data, we first collated the trajectories (s) whose producer and freeloader densities were  

logarithmically within 25% of the mean final population size (See Supplementary Note 3). From 

this filtered data from each day t of the experiment, we then calculated the mean population size 

across all the trajectories from each day ( tx ). Then, we evaluated the expected values using 

equation (37), applied to every two-day interval (xt, xt+1) from every replicate s of the 

experiment, from the first day (t=1) to the penultimate day (t=T-1). This calculation is 

independently performed for both the producer and freeloader populations. Errors were 

calculated by bootstrapping both the trajectories and the two-day intervals.  

Return times were calculated by fitting an exponential to the time series of each population. Only 

data past the first inflexion point on each graph was used, to account for the initial overshoot 

(this is caused by the oscillatory behavior of the coupled producer-freeloader dynamics 
35

. ). The 

return time is the inverse of the exponential parameter c in a + b e
ct
 , (where t represents the time 

in the discrete dynamics) and is averaged across the replicate trajectories of each dilution factor. 

Errors were determined by taking the standard error of the return times of each individual 

trajectory. Further discussions on the estimation of the return time in oscillatory dynamics are 

found in Supplementary Note 2. Note that these two statistical indicators are calculated based on 

an ensemble of replicate populations close to equilibrium. Assuming the system is ergodic, the 

above indicators are equivalent to those calculated from the fluctuations of a single population 

near equilibrium. 
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Supplementary Note 6: Simulation of the experimental producer-freeloader ecosystem 

We simulated a phenomenological model for our producer-freeloader ecosystem, similar to the 

one we previously used for this system 
26,35,54

 
 
. The main assumption of this model is that the 

growth rate of both producers and freeloaders is density dependent, and given by the equation 
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 (38) 

where K is the combined carrying capacity of the system, and W represents a threshold density of 

producers below which both the producers and the freeloaders grow slowly (at rates γl and           

rl =(1-a) γl, respectively), and above which both grow fast (at rates γh and rh = (1+b) γh 

respectively). Therefore, this differential equation captures both logistic growth at high producer 

densities, and the Allee effect from the cooperative behavior of sucrose breakdown at low 

producer densities.  

Notice that the differential equation is not linear, and cannot be solved analytically. After solving 

it numerically, we evaluated it in incremental time steps of T=23.5 hours (taking into account a 3 

hour growth time-lag), and then the producer and freeloader populations are divided by the 

dilution factor (mimicking the experimental dilution step).  

The model is able to capture the increase in the size of the producer population as the 

environment deteriorated, providing further support to the idea that population sizes are not 

necessarily a reliable indicator of population health (Supplementary Fig. 1). In our system the 

producer population size may increase before population collapse because the decrease in 

freeloader population size is faster, thus reducing competition for resources. The parameters in 

the model are the same that we used previously 
26,35

 and are summarized in Supplementary Table 

1. 
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Supplementary Note 7: Elaboration of data analysis procedures for main-text figures 

Figure 1:  The data from Dilution Factors (DF) 333-2000 came from a 9-day experiment with 6 

different dilution factors and about 20 replicates for each. The mean was calculated only using 

the population sizes from the last day (Day 9). No filtering was done except to remove obviously 

dying populations (see Supplementary Note 3), which only removed two data points from 

DF=2000. In a separate experiment, we determined that all trajectories go extinct when DF is 

2200 or higher.  

Figure 2: This data came from 30 replicates of the same dilution factor (DF=1333) of a 14-day 

experiment. No trajectories were omitted from any of the graphs. The eigenvalue calculation 

came from Method 1 (see Supplementary Note 4), which used a fixed point determined from 

averaging the data present from the last 3 days of the experiment that were selected by the 10% 

trajectory velocity filtering algorithm described above. 

Figure 3:  The data points come from a 7-day experiment with 8 different dilution factors with 

30 replicates each. Data was filtered by eliminating obviously dying trajectories. Some initial 

data points were omitted in the analysis due to apparent non-linear behavior of the first-day 

trajectories. The eigenvalues were obtained by Method 1. The fixed points used to analyze the 

data came from the estimates from Supplementary Fig. 4b (originating from the velocity filtering 

algorithm applied to this 7-day experiment). 

Figure 4: Data came from the same nine-day experiment as Fig. 1. The coefficient of variability 

(CV) was calculated as Standard Deviation divided over the Mean from the last day (Day 9) of 

the experiment. No filtering was done except to remove the two obviously dying replicates from 

DF=2000. 
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